مقایسه روش‌های رگرسیون خطی و شبکه عصبی مصنوعی در پیش‌بینی میزان مرگ و میر به عنوان تابعی از دمای هوا (مطالعه موردی: تهران)

نویسندگان

چکیده مقاله:

مقدمه: تغییرات فصلی و روزانه مرگ و میر ارتباط مستقیمی با دما دارد. در این تحقیق داده‌های روزانه مرگ و میر و پارامتر دما طی دوره 2005 -2002 مورد استفاده قرار گرفته است. روش کار: برای پردازش داده‌ها روش‌های تعیین ضریب همبستگی پیرسون، رگرسیون خطی ساده، رگرسیون چندجمله‌ای و شبکه‌های عصبی مصنوعی به عنوان یک روش غیر خطی ( ANN )استفاده شده است. یافته‌ها: نتایج حاصل از کاربرد و تحلیل همبستگی پیرسون نشانگر همبستگی منفی و معنی‌دار بین پارامتر دما با میانگین ماهانه تعداد کل مرگ و میر و مرگ و میر ناشی از بیماری‌های قلبی می‌باشد. ارتباط بین این دو با استفاده از شبکه عصبی و الگوریتم‌های ژنتیکی در مقایسه با روش‌های کلاسیک از جمله رگرسیون خطی و رگرسیون چندجمله‌ای نیز نشان می‌دهد که ترکیب شبکه عصبی مصنوعی با الگوریتم ژنتیک نتیجه بهتری را ارایه می‌کند. به این صورت که بعد از آزمون شبکه با لایه‌های پنهان و ضرایب یادگیری مختلف در حالتی که نمونه‌ها به صورت منظم قرار گرفته دقت مدل افزایش پیدا می‌کند. بحث: با توجه به نتایج حاصله می‌توان گفت که شبکه عصبی به خوبی رابطه غیرخطی بین میانگین ماهانه مرگ و میر را در ارتباط با دمای هوا پیش‌بینی می‌کند. ولی در عین حال با ترکیب الگوریتم ژنتیک و شبکه عصبی سرعت تحلیل و دقت فرآیند افزایش می‌یابد به عبارتی دیگر میزان خطا کاهش می‌یابد.  

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

مقایسه روش های رگرسیون خطی و شبکه عصبی مصنوعی در پیش بینی میزان مرگ و میر به عنوان تابعی از دمای هوا (مطالعه موردی: تهران)

مقدمه: تغییرات فصلی و روزانه مرگ و میر ارتباط مستقیمی با دما دارد. در این تحقیق داده های روزانه مرگ و میر و پارامتر دما طی دوره 2005 -2002 مورد استفاده قرار گرفته است. روش کار: برای پردازش داده ها روش های تعیین ضریب همبستگی پیرسون، رگرسیون خطی ساده، رگرسیون چندجمله ای و شبکه های عصبی مصنوعی به عنوان یک روش غیر خطی ( ann )استفاده شده است. یافته ها: نتایج حاصل از کاربرد و تحلیل همبستگی پیرسون نشا...

متن کامل

مقایسه تأثیر وضعیت طاق باز و دمر بر وضعیت تنفسی نوزادان نارس مبتلا به سندرم دیسترس تنفسی حاد تحت درمان با پروتکل Insure

کچ ی هد پ ی ش مز ی هن ه و فد : ساسا د مردنس رد نامرد ي سفنت سرتس ي ظنت نادازون داح ي سکا لدابت م ي و نژ د ي سکا ي د هدوب نبرک تسا طسوت هک کبس اـه ي ناـمرد ي فلتخم ي هلمجزا لکتورپ INSURE ماجنا م ي دوش ا اذل . ي هعلاطم ن فدهاب اقم ي هس عضو ي ت اه ي ندب ي عضو رب رمد و زاب قاط ي سفنت ت ي هـب لاتـبم سراـن نادازون ردنس د م ي سفنت سرتس ي لکتورپ اب نامرد تحت داح INSURE ماجنا درگ ...

متن کامل

برآورد دمای خاک از داده‌های هواشناسی با استفاده از مدل‌های یادگیری ماشین سریع، شبکه عصبی مصنوعی و رگرسیون خطی چندگانه

دمای خاک عامل کلیدی است که فرآیندها و خصوصیات فیزیکی، شیمیایی و بیولوژیکی خاک را کنترل می­کند؛ لذا بر کمیت و کیفیت تولید محصولات کشاورزی تأثیر می­گذارد. هدف از انجام این پژوهش برآورد دمای خاک با استفاده از پارامترهای هواشناسی به روش­های مختلف ماشین یادگیری بوده است. بدین منظور داده‌های هواشناسی و دمای خاک در عمق‌های 5، 10، 20، 30، 50 و 100 سانتی‌متری از 17 ایستگاه‌ سینوپتیک استان خوزستان مربوط ...

متن کامل

تحلیل تأثیر دمای هوا بر مرگ و میر شهر تهران

مقدمه: تغییرات فصلی و روزانه مرگ و میر ارتباط مستقیمی با دما دارد. کاهش و افزایش دما سهم عمده ای بر میزان مرگ ومیر داشته و اثر استرس زای دما بر تعداد فوت شدگان یکی از عوامل افزایش مرگ و میر می باشد.کمیت سازی ارتباط بین مرگ ومیر روزانه و دما به عنوان یک خط مشی اساسی جهت افزایش دقت سیستم های هشدار کاهش یا افزایش دما سودمند می باشد. هدف این تحقیق بررسی ارتباط بین دما با تعداد فوت شدگان شهر تهران ط...

متن کامل

پیشبینی فراوانی وقوع گرماهای فرین با استفاده از روشهای شبکه عصبی مصنوعی و رگرسیون خطی در ایران مرکزی

رویدادهای اقلیمی فرین، پدیدههایی هستند که از نظر شدت و فراوانی کمیاب هستند. عمده فعالیت های انسانی براساس دما پایه گذاری شده و ارگانیسم و فعالیت های ذهنی و بدنی انسان و اغلب زیستمندان، نسبت به دماهای فرین به شدت حساس بوده و دچار مشکل می شود. گرماهای فرین از تظاهرات اصلی تغییرات اقلیمی جهان معاصر هستند که به لحاظ وقوع و صدمات جانی و مالی به بار آمده، بسیار حائز اهمیت می باشد. روزهای گرم از حالت ...

پیش‌بینی سیل با استفاده از شبکه عصبی مصنوعی و رگرسیون چندمتغیره غیرخطی (مطالعه موردی: طالقان)

با توجه به کمبود ایستگاه‌های اندازه‌گیری در کشور، لزوم استفاده از مدل‌های تجربی برآورد دبی‌ حداکثر لحظه‌ای بسیار ضروری است. در این پژوهش از دو مدل شبکه عصبی و رگرسیون چندمتغیره غیرخطی برای پیش‌بینی دبی اوج در حوزة آبخیز طالقان استفاده گردید. با استفاده از آمار دبی‌های متوسط حداکثر روزانه و بارش‌های متناظر، یک روز قبل و پنج روز قبل و مجموع بارندگی پنج روزه و همچنین دمای میانگین ماهانه در واحدهای...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 12  شماره None

صفحات  45- 53

تاریخ انتشار 2009-10

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

کلمات کلیدی

کلمات کلیدی برای این مقاله ارائه نشده است

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023